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Abstract

The anisotropic lattice fermion actions are investigated with the one-loop perturbative calcula-

tions aiming at constructing a formulation for heavy quark with controlled systematic uncertainties.

For the heavy-light systems at rest the anisotropic lattice with small temporal lattice spacing at

suppresses the discretization error by a power of atmQ for a heavy quark of mass mQ. We discuss

the issue of large discretization errors, which scales as asmQ with as the spatial lattice spacing. By

performing one-loop calculations of the speed-of-light renormalization for several possible lattice

actions in the limit of at ! 0, we show that one can eliminate the large systematic error on the

anisotropic lattice.
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I. INTRODUCTION

In the heavy quark physics, the lattice simulation of Quantum Chromodynamics (QCD)

is an indispensable tool to compute hadron masses and matrix elements nonperturbatively

without introducing model dependence. One of the most important hadron matrix elements

in the B physics is the B meson decay constant fB, for which a number of lattice calculations

have been performed so far and the systematic uncertainties are under control at the level

of 15% accuracy [1]. In future, further precise calculation, say better than 5%, is necessary

to constrain the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements more strictly and to

search for the signature of new physics.

One of the dominant uncertainties in the lattice simulation of heavy quark is the system-

atic error associated with the large heavy quark mass, since the lattice cuto� 1=a available

with current computer power is not much larger than the heavy quark mass mQ. A con-

ventional approach to avoid this problem is to restrict ourselves in the region where the

systematic error is under control (mQ � 1=a) and to extrapolate to the b quark mass us-

ing the heavy quark scaling law predicted by the heavy quark e�ective theory (HQET).

This is unsatisfactory in order to achieve the 5% accuracy, since the possible error scales as

(amQ)
n (n = 2 for the O(a)-improved action) and thus grows very quickly toward heavier

quark masses. The extrapolation to the b quark mass could even amplify the systematic

uncertainty.

Another method is the HQET-based approach which includes lattice NRQCD [2, 3] and

the Fermilab method [4]. In this method one considers the lattice action for heavy quark as

an e�ective theory valid for large heavy quark masses. The advantage of the HQET-based

approach is the absence of the large systematic error which scales as (amQ)
n. The price

one has to pay, on the other hand, is the introduction of a number of terms in the action.

Their associated coeÆcients have to be determined by matching the e�ective theory onto

the continuum full theory. The matching is usually carried out using perturbation theory,

which limits the accuracy of the lattice calculation.

Besides the HQET-based approach, a possible way to control heavy quark discretization

e�ects is to consider an anisotropic lattice, where the temporal lattice spacing at is much

smaller than the spatial one as [5, 6]. Since for a heavy meson (or a heavy baryon) at rest the

large energy scale of order mQ appears only in the temporal component in the momentum
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space, one can expect that the systematic error arises as (atmQ)
n and therefore suppressed

as far as at is small enough. The computational cost is not prohibitive if one keeps the

spatial lattice spacing relatively large. The problem of the matching of many operators in

the e�ective theory does not appear, as the theory is relativistic.

There is, however, a subtle issue discussed in [7] that for a certain choice of the Wil-

son term in the spatial direction the systematic error may arise in the combination asmQ

rather than the expected atmQ and the virtue of the anisotropic lattice is spoiled. With an

alternative choice the error of order (asmQ)
n may be avoided but the unwanted doublers

become lighter and disturbs the simulation of physical states. The authors of [8] even denied

the advantage of the anisotropic lattice used for heavy quark based on their observation of

asmQ-like behavior through radiative corrections. In this paper we discuss this issue fur-

ther by considering a larger set of O(a)-improved lattice fermion actions and by performing

one-loop calculations in the limit at ! 0 where no atmQ error remains.

The appearance of large systematic errors scaling as asmQ is naively unexpected for the

following reasons. In the at ! 0 limit the only source of the discretization error is the

spatial derivative in the lattice action. In momentum space, therefore, discretization errors

scale as asp with p a typical (spatial) momentum scale in the system, which is of order

�QCD for the heavy-light mesons or baryons at rest, and the combination asmQ may not

appear as the momentum of order mQ ows only in the temporal direction. This intuitive

picture should be correct even after radiative corrections, because the large momentum of

order mQ does not ow into the spatial direction in the momentum space, and therefore the

discretization error in the spatial lattice derivative cannot accompany the heavy quark mass

mQ. It becomes clearer if one considers the limit 1=as � mQ � 1=at, because the spatial

momentum integral runs up to �=as and thus cannot pick up the larger scale mQ.

Here, in order to understand the reason why the unexpected asmQ-type error may appear

in [7, 8], let us consider the energy-momentum dispersion relation at the tree level. We

consider the at ! 0 limit, and the spatial lattice spacing is also kept small enough such

that we can neglect the error of O(a2s) and higher. For the Wilson-type fermions the inverse

quark propagator is given as

mQ + i0p0 + i
X
i

ipi +
rs
2�
as
X
i

p2i +O(a2s); (1.1)

where rs denotes the coeÆcient in front of the spatial Wilson term as de�ned in (2.2) in the
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next section. The term including the anisotropy � = as=at is maintained even in the at ! 0

limit, because that term could remain when rs scales as �. To push up the spatial doubler

mass in the cuto� scale, rs=� must be kept �nite.

The energy-momentum dispersion relation becomes

�p20 =

 
mQ +

rs
2�
as
X
i

p2i

!2

+
X
i

p2i +O(a2s)

= m2
Q +

 
1 +

rs
�
asmQ

!X
i

p2i +O(a2s); (1.2)

and thus the error of order asmQ appears unless rs=� vanishes, for which the doublers become

light. Since the term (rs=�)asmQ comes from the cross term of the mass and the Wilson

terms, the origin of the combination asmQ is nothing to do with the large momentum ow

into the spatial direction. At the tree level we may consider a set of lattice actions in which

there is no spatial Wilson term by introducing higher derivative operators to decouple the

unwanted doublers. This class of actions does not have the problem of the O(asmQ) error

at the tree level and may be used for heavy quark even for asmQ > 1. There are higher

order terms whose coeÆcient behaves like asmQ, but we neglect them as their contribution

is O(a2s) or higher.

The problem is, then, whether the nice property of these actions is maintained even with

radiative corrections. In this paper we perform one-loop perturbative calculation for these

lattice actions and investigate the mass dependence of the rest mass M1 = E(0) and the

kinetic mass M2 = (@2E=@p21)
�1
p=0, where E(p) is the energy of heavy quark on-shell. We

examine the functional dependence of the speed of light renormalization parameter �, which

is de�ned such that the relation M1 =M2 is satis�ed. If the one-loop coeÆcient behaves as

(asmQ)
n, the action su�ers from the unwanted heavy quark mass dependent error. Because

we are interested only in the O((asmQ)
n) errors, we carry out the one-loop calculation in

the at ! 0 limit, where O((atmQ)
n) errors vanish. The fermion actions we consider are the

anisotropic SW (Sheikholeslami and Wohlert) action [7, 9] and some special cases of the

D234 action [5]. We �nd the latter to be useful for applications to heavy quark systems.

This paper is organized as follows. In Section II, we de�ne the anisotropic fermion actions

we consider in this paper, and discuss their tree-level properties. The static limit of those

actions is considered in Section III. The one-loop calculation is then given in Section IV,

whose results are presented in Section V. Section VI is devoted to our conclusions. Some
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technical details are deferred to the Appendices.

II. ANISOTROPIC LATTICE FERMION ACTION

We start with the D234 quark action on the anisotropic lattice [5] given by

SD234 = ata
3
s

X
x

� (x)Q (x) (2.1)

Q = m0 +
X
�

���r� (1� b�a
2
���)

� 1

2
at
�X

�

r��� +
X
�<�

c�SW���F��
�
+
X
�

��d�a
3
��

2
� (2.2)

where a0 = at and ai = as (i = 1; 2; 3) are the temporal and spatial lattice spacings

respectively, and

(�0; �i) = (1; �) ; (b0; bi) = (bt; bs) ; (r0; ri) = (rt; rs) ; (2.3)

(c0SW; c
i
SW) = (ctSW; c

s
SW) ; (d0; di) = (dt; ds) : (2.4)

Note that the lattice spacing in front of the Wilson and clover terms is at, not a�. This

notation is similar to the one in [5], but di�erent from those in [6, 7]. The anisotropy

parameter is de�ned by

� � as=at: (2.5)

The lattice covariant derivatives r�, ��, r��� and �2
� represent D�, D

2
�, D

3
� and D4

�,

respectively, in the continuum theory, and their detailed de�nitions are given in Appendix A.

In this paper we always set

rt = 1 ; bt = dt = 0 : (2.6)

Thus, the operator Q is nothing but the Wilson-Dirac operator as far as the temporal deriva-

tives are concerned. With this condition, the energy-momentum relation for the fermion has

a physical solution only, and the unphysical temporal doublers do not appear [5].

Solving Q(p)Q(p)y = 0 in the momentum space and then setting p0 = iE, we obtain the

energy-momentum relation for the D234 action as

4 sinh2(
atE

2
) =

�2a2t
P

i �pi
2(1 + bsa

2
i p̂i

2)2 + �(p)2

1 + �(p)
; (2.7)
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where

�(p) = atm0 +
1

2
rsa

2
t

X
i

p̂2i + �dsat
X
i

a3i p̂
4
i ; (2.8)

and �p� and p̂� are de�ned in Appendix A.

From (2.7), we obtain the tree-level rest mass M1 = E(0) and kinetic mass M2 =

(@2E=@p21)
�1
p=0 as

atM1 = log(1 + atm0) ; (2.9)

1

atM2
=

2�2

atm0(2 + atm0)
+

rs
1 + atm0

: (2.10)

On the anisotropic lattice with atm0 � 1, the tree-level mass ratioM1=M2 can be expanded

in terms of atm0 as

M1=M2 = 1 + (rs � 1) atm0 +O((atm0)
2) ; (2.11)

where we set � = 1. The deviation of M1=M2 from unity is a lattice discretization error

arising from the fermion mass. Unless rs / �, such an error is a function of atm0 alone,

which is small on the anisotropic lattice with atm0 � 1 [7]. When rs / �, a discretization

error of order asm0 = �atm0 arises, which is still large on the anisotropic lattice.

From (2.7), we can also calculate the \spatial-doubler" mass Ed, i.e. the energy at the

edge of the Brillouin zone (pi = �=as):

atE
d = log

�
1 + atm0 +

2rs
�2
nd +

16�ds
�

nd

�
(2.12)

� log[1 + atm
d
0] ; (2.13)

where nd (= 1, 2, 3) is the number of spatial direction with pi = �=as, and the bare spatial-

doubler mass md
0 is given by

asm
d
0 = asm0 +

2rs
�
nd + 16�dsnd (2.14)

in units of the spatial lattice spacing as. We note that one has to take rs / � or ds > 0 in

order to decouple the spatial-doubler with the energy Ed from the physical state for large

values of �.

It is interesting to consider the energy-momentum relation in the Hamiltonian limit at !
0 (� !1), where atm0 errors vanish. In this limit the left-hand side of (2.7) is replaced by
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a2tE
2, and the energy-momentum relation is simpli�ed to

E2(at ! 0) = �2
X
i

�pi
2(1 + bsa

2
i p̂i

2)2 +
�(p)2

a2t
(2.15)

= m2
0 + �2p2 +

�
��

2

3
+ 2�2bs + 2asm0�ds

�
a2s
X
i

p4i +O(a4p6) : (2.16)

From a small p expansion we obtain a non-relativistic expression of E(at ! 0):

E(at ! 0) = m0+
�2

2m0

p2� �4

8m3
0

(p2)2+
1

2m0

�
��

2

3
+2�2bs+2asm0�ds

�
a2s
X
i

p4i +O(a
5p6) :

(2.17)

Taking the static limit m0 !1 subsequently, one obtains

E(at ! 0)
m0!1�! m0 + �dsa

3
s

X
i

p4i +O(a5p6) : (2.18)

Note that the
P

i p
4
i term survives even in the static limit. This will be discussed later.

We are now ready to de�ne our anisotropic actions more explicitly. We study two actions:

one is the SW action [7, 9], and the other is a variant of the D234 action [5], which we call the

sD34 action. We give these actions and discuss their tree-level properties in the following.

A. SW action

The Sheikholeslami-Wohlert (SW) action [7, 9] is de�ned by

� = rs = c�SW = 1 ; bs = ds = 0 : (2.19)

An O(at) error arising from the Wilson terms is removed by c�SW = 1. Since the Wilson

terms are O(at), this action goes over to the \naive" quark action in the at ! 0 (� ! 1)

limit. The energy splitting between the physical state and spatial-doublers Ed�E vanishes

in this limit, as one can explicitly �nd from (2.14). The energy-momentum relation for the

SW action is shown in Figure 1. The energy at the edge of the Brillouin zone decreases as

� increases, which shows the reappearance of the spatial-doubler.

Since rs = 1, the tree-level mass ratio M1=M2 (Eq. (2.11)) contains no O((asm0)
n) error:

M1=M2 = 1 + O((atm0)
2)

at!0�! 1. The anisotropic SW action has been applied to the

simulation of charmonium [10] and the charmed hadrons [11, 12] on � ' 4 anisotropic

lattices.
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B. sD34 action

We de�ne the sD34 action as

rs = csSW = 0 ; bs > 0 ; ds > 0: (2.20)

Although the spatial Wilson term is absent (rs = 0), this action is doubler-free because

ds > 0. The energy splitting Ed � E remains even in the at ! 0 limit as far as ds is a

constant independent of �. Setting ds = 1=8 for this action gives the same spatial-doubler

mass md
0 as for the � = 1 SW action when � = 1. The name \sD34" is a reminder that the

spatial iD
3
i and D4

i terms survive in the at ! 0 limit. The sD34 action is similar to the

one proposed in [13, 14], except that those papers consider the case of the isotropic lattice

� = 1. Since the sD34 action has the next-nearest neighbor interactions such as � r��� 

and � �2
� , this action is more costly to simulate than the SW action which consists of the

nearest neighbor interactions only.

The sD34 action does not generate O(as) discretization errors because of rs = csSW = 0.

In order to remove an O(at) error arising from the temporal Wilson term with rt = 1, we

take

� = 1 +
1

2
rtatm0 ; ctSW =

1

2
: (2.21)

This condition is obtained by performing a �eld rede�nition  c = 
c , � c = � �
c, �
c =


c = 1 � 1
4
rtat(D= 0 � mc) to the continuum quark action � c(x)(D= + mc) c(x) [5]. Since

rs = 0 the tree-level mass ratio M1=M2 again contains no O((asm0)
n) errors: M1=M2 =

1 +O((atm0)
2)

at!0�! 1.

In the rest of paper we consider the following three choices of bs and ds parameters:

bs =
1

6
; ds =

1

8
: sD34 ; (2.22)

bs =
1

8
; ds =

1

8
: sD34(v) ; (2.23)

bs =
1

2
; ds =

1

4
: sD34(p) : (2.24)

The �rst choice sD34, where bs = 1=6, eliminates an O(a2s) error arising from the iri

term: iri(1 � 1
6
a2s�i) = iDi + O(a4s). The second choice sD34(v), where bs = 1=8,

eliminates an O(a2s) error in the one-gluon vertex (A13): V a
1;i(q; q

0; k) = �igtai + O(a3s).

The di�erence between the one-loop results for sD34 and for sD34(v) is numerically small as
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shown in the next section. With the third choice sD34(p), the hopping terms in the action

are proportional to the projection matrix 1 � �: using the Wilson's projection operator

w� � a��r�� 1
2
a2���, the space-component of the action is given by wi+

1
2
w2
i (i = 1; 2; 3).

Therefore the third choice can reduce simulation costs compared to the other two choices

[5]. At the tree level the sD34 action (2.22) is O(a2s)-improved, while others contain some

O(a2s) errors. Within the current set of operators (2.2), therefore, the best available choice

to suppress discretization e�ects is the sD34 action.

The energy-momentum relations for the sD34 and sD34(p) actions are shown in Figures 2

and 3 respectively. For both choices the energy at the edge of the Brillouin zone increases

as � increases, in contrast to the case of the SW action. In small asp region, the energy-

momentum relation for the sD34 action is quite close to the continuum one because it has

no O(a2sp
2) errors. Moreover, in large asp region near the edge of the Brillouin zone, it is

close to the continuum one too, for large values of �.

To summarize, both the SW action and the sD34 action do not generate the O((asmQ)
n)

(n = 1; 2; � � �) errors at the tree level in the mass ratioM1=M2. While the SW action su�ers

from the spatial doubler for large values of �, the sD34 action is doubler-free for any value of

�. Both actions can be used for simulations of the charm quark, if � ' 2� 4 and atmc � 1.

But simulations of the bottom quark keeping atmb � 1 require � ' 5 � 10, for which the

anisotropic SW action may be contaminated by the spatial doublers.

Besides the above actions, two other anisotropic actions have been proposed and applied

to heavy quark systems: one is the action with rt = 1 and rs = � [6, 15{17], and the other

is that with rt = rs = � [18{20]. However, these actions has the spatial Wilson term scaling

as rs = � and therefore generate the O((asm0)
n) errors in the mass ratioM1=M2 even at the

tree level when � = 1, as discussed before and in [7]. For this reason, we do not consider

these actions further in this paper.

III. STATIC LIMIT mQ !1 AND THE HAMILTONIAN LIMIT at ! 0

In this section we discuss the static limitmQ !1 of the anisotropic fermion actions. At

�nite at, the action always approaches to the usual static action in the limit of atmQ !1.
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This is shown, e.g. by rescaling the fermion �eld in (2.1) as

 (x) =
e�atM1�t

p
atm0

h(x) ; (3.1)

and then taking atm0 !1.

On the other hand, the action in the limit of mQ ! 1 while keeping the condition

atmQ � 1 can be di�erent. In the at ! 0 limit, the lattice Dirac operator (2.2) becomes

Q(at ! 0) = m0 + 0D0 + �
X
i

iri (1� bsa
2
i�i) + �dsa

3
s

X
i

�2
i ; (3.2)

unless rs / �. Taking subsequently the static limit, the fermion �eld splits as usual into large

and small components in the Dirac representation of the Dirac matrix, and the o�-diagonal

terms drop out, the action becomes

Q(at ! 0)
mQ!1�! m0 + 0D0 + �dsa

3
s

X
i

�2
i : (3.3)

We note that the a3s�
2
i term, proportional to �ds, remains in the static limit. The SW

action with ds = 0 approaches the usual static action, but the sD34 action with ds > 0

does not. This observation is consistent with the static energy evaluated in the at ! 0 limit

(2.18). Formally the static limit (3.3) can be derived by applying the Foldy-Wouthuysen-

Tani transformation

 (x) �! exp

"
� �

2m0

X
i

iri (1� bsa
2
i�i)

#
 (x) (3.4)

to (3.2) and then taking m0 !1.

Results of the one-loop calculation at at = 0 in the next section should be consistent with

the form (3.3) in the mQ !1 limit. Suppose that the static action is renormalized as

(m0 + Æm) + 0D0 � 1

2
Æras

X
i

�i + (�ds + Æd)a
3
s

X
i

�2
i ; (3.5)

then the mass shift Æm, the kinetic term renormalization Ær, and Æd do not depend on m0, but

may depend on �ds because the static propagator and vertices contain �ds through (3.3).

IV. ONE-LOOP CALCULATION IN THE HAMILTONIAN LIMIT

In this section we present the one-loop calculations for the anisotropic actions de�ned

in Section II. We calculate one-loop corrections to the rest mass and the kinetic mass

renormalization factors in the Hamiltonian limit at ! 0. From the latter we obtain the

one-loop correction to the � parameter.
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A. Formalism

In the one-loop calculation we basically follow the notation of [21] and add some exten-

sions to the case of the anisotropic lattice.

We write the inverse free quark propagator as

atG
�1
0 (p) = iatK= (p) + atL(p); (4.1)

and the self energy as

at�(p) = i
X
�

�A�(p) sin(a�p�) + C(p)

� i
X
�

�B�(p) + C(p) ; (4.2)

where p is the external momentum. The inverse full quark propagator is then given by

G�1(p) = G�1
0 (p)� �(p): (4.3)

Solving G�1(G�1)y = 0 with p0 = iE, we obtain the all-orders dispersion relation

1 + �(p)� cosh(atE)� C =
q
(1� A0)2 sinh

2(atE)�Pi(atKi � Ai sin(aspi))
2 ; (4.4)

where �(p) is given in (2.8).

Setting p = 0 in (4.4), we obtain the rest mass M1 = E(0) as

eatM1 = 1 + atm0 + A0(iM1; 0) sinh(atM1)� C(iM1; 0)

= 1 + atm0 � iB0(iM1; 0)� C(iM1; 0): (4.5)

In order to have massless quarks remain massless at the quantum level, we need a mass

subtraction. De�ning the critical bare mass atm0c � C(0; 0), we can write

eatM1 = 1 + atM0 � iB0(iM1; 0)� Csub(iM1; 0); (4.6)

where M0 = m0 �m0c and Csub(iM1; 0) = C(iM1; 0)� atm0c. When M0 = 0, the rest mass

M1 vanishes by construction. Usually the mass subtraction is done nonperturbatively in the

numerical simulation by de�ning the critical hopping parameter.

In perturbation theory the rest mass is expanded as

M1 =
1X
l=0

g2lM
[l]
1 ; (4.7)
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in which the tree-level rest mass is

asM
[0]
1 = � log(1 + atM0)

at!0�! asM0; (4.8)

while the one-loop coeÆcient is given by

asM
[1]
1 =

�
�i�B[1]

0 (iM1; 0)� �C
[1]
sub(iM1; 0)

�
e�atM

[0]
1

at!0�! �i�B[1]
0 (iM1; 0)� �C

[1]
sub(iM1; 0): (4.9)

Note that M1 is now normalized by the spatial lattice spacing as. Before the subtraction

the one-loop coeÆcient is given by

asM
[1]
1;nosub

at!0�! � i�B[1]
0 (iM1; 0)� �C [1](iM1; 0) : (4.10)

Di�erentiating (4.4) in terms of p1 twice and then setting p = 0, we obtain the kinetic

mass M2 = (@2E=@p21)
�1
p=0 as

eatM1 � A0(iM1; 0) cosh(atM1)

�2atM2

=
rs
�2

+D(0) +
[�=� � A1(iM1; 0)]

2

[1� A0(iM1; 0)] sinh(atM1)
; (4.11)

where

D(0) =
d2

d(asp1)2
[A0(iE(p);p) sinh(atM1)� C(iE(p);p)]p=0

= D1s(0) +
i

asM2
D1t(0) +

i

asM2
� B0(iM1; 0)

� tanh(atM1)
(4.12)

with

D1s(0) =
@2

@(asp1)2

�
1

i
B0 � C

�
p=(iM1;0)

; (4.13)

iD1t(0) =
@

@(asp0)
[B0 � iC]p=(iM1;0)

: (4.14)

The kinetic mass is expanded as

M2 =
1X
l=0

g2lM
[l]
2 ; (4.15)

and the tree level relation becomes

eatM
[0]
1

atm2
= rs +

�2

sinh(atM
[0]
1 )

(4.16)

where M
[0]
2 = m2(M

[0]
1 ).
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From (4.11) and (4.16), we can obtain the kinetic mass renormalization factor de�ned by

ZM2 �
M2

m2(M1)
= 1 +

1X
l=1

g2lZ
[l]
M2
: (4.17)

Here the argument of m2 is the all-orders rest mass M1. The one-loop coeÆcient is given by

Z
[1]
M2

=
2��A[1]

1 (iM1; 0)� �2A[1]
0 (iM1; 0)�D[1](0)�2 sinh(atM1)

�2 + rs sinh(atM1)

�A[1]
0 (iM1; 0) cosh(atM1)e

�atM1 : (4.18)

In the at ! 0 limit, the tree-level kinetic mass goes to

1

m2

at!0�! �2

M1
+Rsas ; (4.19)

where we de�ned Rs � rs=�, and hence ZM2 goes to

ZM2

at!0�! M2

M1
�2 +RsasM2 : (4.20)

Therefore, in this limit, the renormalized � parameter and Rs which give M1 = M2 can be

determined from ZM2:

ZM2

at!0�! �2 +RsasM1

= 1 + (2�[1] +R[1]
s asM

[0]
1 )g2 +O(g4) (4.21)

with the one-loop coeÆcient

Z
[1]
M2

= 2�[1] +R[1]
s asM

[0]
1 : (4.22)

Here we used R[0]
s

at!0�! 0.

On the other hand, from (4.18) we obtain in this limit

Z
[1]
M2

at!0�! 2

�
�A

[1]
1 (iM1; 0)� 2

i

�B
[1]
0 (iM1; 0)

asM1
� asm2�D

[1](0) ; (4.23)

where A
[1]
1 (iM1; 0) =

@ B
[1]
1

@(asp1)
jp=(iM1;0).

B. One-loop diagrams

Here we compute one-loop contributions relevant to the rest mass and the kinetic mass

renormalization. At the one-loop level, the self-energy is written as

�[1](p) = �reg(p) + �tad(p) + �T:I:(p); (4.24)
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where the contribution from the regular graph Fig. 4(a) is denoted by �reg(p), while the

tadpole graph Fig. 4(b) gives �tad. In order to remove the bulk of �tad, we apply the tadpole

improvement [22], which amounts to �T:I:. Feynman rules relevant to our calculations are

summarized in Appendix A. We use the anisotropic Wilson gluon action given by

Sg =
6

g2

2
4�X

x;i

(1� P0i(x)) +
1

�

X
x;i>j

(1� Pij(x))

3
5 ; (4.25)

where P0i(x) and Pij(x) are the temporal and spatial plaquettes respectively. In the calcu-

lations of �reg and �tad, we adapt the Feynman gauge � = 1 for the gluon propagator.

C. regular graph

The contribution from the regular graph is

as�
reg(p) = i

X
�

��B
reg
� (p) + �Creg(p)

= CF

Z �

��

d4k�
(2�)4

1

�2k̂20 + k̂2

i
P

� � �FB�(p; k) + �FC(p; k)P
�
�K�(p� k)2 + �L(p� k)2

; (4.26)

where �L = atL, �K = atK and the gluon momenta are rescaled as a�k� ! k� and a�k̂� ! k̂�,

and

�FB� = atFB� = 2 �K�
�X2
� � �K�

X
�

( �X2
� + �Y 2

� ) + 2�L �X�
�Y� ; (4.27)

�FC = atFC = 2
X
�

�K�
�X�
�Y� � �L

X
�

( �X2
� � �Y 2

� ) (4.28)

with �K = �K(p� k), �L = �L(p� k), �X� = �X�(2p� k;�k) and �Y� = �Y�(2p� k;�k) given in

Appendix A. Since the vertex from the clover term ���F�� in the fermion actions are O(at)

and vanishing in the at ! 0 limit, we omit their contributions.

In the at ! 0 limit, where

FB0
at!0�! (p0 � k0)f1�

X
j

( �X2
j + �Y 2

j )g ; (4.29)

FBi
at!0�! 2Ki

�X2
i �Kif1 +

X
j

( �X2
j + �Y 2

j )g+ 2L �Xi
�Yi ; (4.30)

FC
at!0�! 2

X
j

Kj
�Xj
�Yj � Lf1 +X

j

( �X2
j � �Y 2

j )g ; (4.31)
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we obtain

�Breg
� (p)

at!0�!
Z
k

Z 1

�1

dk0
2�

1

a2sk
2
0 + k̂2

FB�(p; k)S2(p� k) ; (4.32)

�Creg(p)
at!0�!

Z
k

Z 1

�1

dk0
2�

1

a2sk
2
0 + k̂2

FC(p; k)S2(p� k) : (4.33)

Here we de�ned Z
k
� CF

Z �

��

d3k

(2�)3
(4.34)

and

S2(p� k) � 1

(p0 � k0)2 +
P

iKi(p� k)2 + L(p� k)2
: (4.35)

Di�erentiating (4.32) and (4.33) in terms of external momenta p and then setting p =

(iM1; 0), we obtain the contributions to M
[1]
1 and Z

[1]
M2

according to (4.9) and (4.23). For

the evaluation of the loop integrals, we �rst integrate over k0 analytically as described in

Appendix B. The remaining integration over k is evaluated numerically using an adaptive

integration routine VEGAS [23].

Since the rest mass and the kinetic mass are physical quantities, one-loop corrections to

them are infrared-�nite. Although there are infrared divergences in the partial derivatives

D1s(0) and D1t(0) in the kinetic mass renormalization, they cancel in the total derivative

D(0). In numerical integrations over k, we evaluate the total derivative directly, rather than

evaluate each partial derivative with subtraction of the infrared divergences.

D. tadpole graph

Although the calculation of �tad is much simpler than that of �reg, it is worthwhile to

show the dependence of the results on the mass and on the parameters. The contribution

from the tadpole graph at �nite at is given by

as�
tad(p) = i

X
�

��B
tad
� (p) + �Ctad(p)

= CF

Z �

��

d4k�
(2�)4

1

�2k̂20 + k̂2

�X
�

a�
at

"
i�

(
a�X� sin(a�p�) + 4a�Z� sin(2a�p�) cos

2(
k�
2
)

)

�
(
a�Y� cos(a�p�) + 4a�W� cos(2a�p�) cos

2(
k�
2
)

)#
; (4.36)
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from which we immediately obtain

�Btad
� (p) = CF

a�
as
fJ a�X� + 8T� a�Z� cos(a�p�)g sin(a�p�); (4.37)

�Ctad(p) = �CF

X
�

a�
as
fJa�Y� cos(a�p�) + 4T� a�W� cos(2a�p�)g ; (4.38)

where

J � �
Z �

��

d4k�
(2�)4

1

�2k̂20 + k̂2
; (4.39)

T� � �
Z �

��

d4k�
(2�)4

1

�2k̂20 + k̂2
cos2(

k�
2
): (4.40)

In the at ! 0 limit, J = T0 = 0:2277 and Ti = 0:1282.

Tadpole contributions to M
[1]
1 and Z

[1]
M2

in the at ! 0 limit are easily calculated from

(4.37) and (4.38). The contribution to the rest mass before the subtraction (4.10) is given

by

asM
tad
1;nosub

at!0�! CF

X
i

fJasYi + 4Ti asWig ; (4.41)

which depends on asYi and asWi , i.e. �ds, but not on the mass. It contributes to the critical

mass asm0c only, so asM
tad
1 = 0 after the subtraction.

The contribution to the kinetic mass renormalization is given by

Ztad
M2

at!0�! CF

�
2

�
(JasX1 + 8T1 asZ1) + asm2(JasY1 + 16T1 asW1)

�
: (4.42)

We �nd that a term proportional to asm2 appears, which depends on �ds again. This

manifest asmQ dependence originates from the �D(1s) term in (4.23). Therefore Ztad
M2

diverges

as O(asmQ) toward the static limit for the sD34 action with ds > 0, while it is mass-

independent for the SW action with ds = 0. Similar mass-dependences are also observed in

Zreg
M2
. We will discuss the O(asmQ) divergence of ZM2 in Section V.

E. tadpole improvement

Tadpole improvement [22] is achieved by replacing the link valuable U� by U�=u�, where

u� = hU�i is the mean link valuable. In perturbation theory the contribution from the

tadpole improvement is obtained from the di�erence between the inverse free propagator

G�1
0 and the tadpole-improved inverse free propagator (G�1

0 )T:I: [18]. In momentum space

the latter is given by the former with replacements

sin(na�p�)! sin(na�p�)=u
n
�; cos(na�p�)! cos(na�p�)=u

n
�; (4.43)
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where n = 1; 2; � � �. The one-loop contribution is then given by

as�
T:I:(p) =

�
asG

�1
0 (p)� as(G

�1
0 )T:I:(p)

�
=g2

=
X
�

as
a�
u[1]� [i� f2a�X� + 8a�Z� cos(a�p�)g sin(a�p�)

� f2a�Y� cos(a�p�) + 4a�W� cos(2a�p�)g] ; (4.44)

where we expanded

u� = 1 + g2u[1]� +O(g4) (u[1]� < 0): (4.45)

We adopt the mean link in Landau gauge for the de�nition of u�, which is given by

u[1]� = � 1

2

a2�
a2s
CF J

�=0
� (4.46)

with

J�� = �
Z �

��

d4k�
(2�)4

1

�2k̂20 + k̂2

8><
>:1� (1� �)

a2s
a2�
k̂2�

�2k̂20 + k̂2

9>=
>; (4.47)

� J � (1� �) ÆJ�: (4.48)

In the at ! 0 limit,
P3

i=1 ÆJi = ÆJ0 =
1
2
J . We then obtain

�BT:I:
� (p) = �CF

a�
as
J�=0
� fa�X� + 4a�Z� cos(a�p�)g sin(a�p�) ; (4.49)

�CT:I:(p) = CF

X
�

a�
as
J�=0
� fa�Y� cos(a�p�) + 2a�W� cos(2a�p�)g : (4.50)

Comparing (4.49) and (4.50) with (4.37) and (4.38), we �nd that �BT:I:
� and �CT:I:

� are also

obtained from �Btad
� and �Ctad

� with replacements

J ! � J�=0
� ; T� ! � 1

2
J�=0
� : (4.51)

Contributions to M
[1]
1;nosub and Z

[1]
M2

from the tadpole improvement are given by Eqs. (4.41)

and (4.42) with the above replacements. Since J�=0
i = 5

6
J , tadpole contributions are largely

canceled by the tadpole improvement.

V. ONE-LOOP RESULTS

A. Rest mass

Now we present the results of our one-loop calculations in the at ! 0 limit. The one-loop

correction to the rest mass asM
[1]
1 is plotted as a function of asM

[0]
1 =(1+asM

[0]
1 ) in Figure 5,
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and numerical values of asM
[1]
1 and asm

[1]
0c are given in Table I. As shown in the �gure, asM

[1]
1

for all the actions increase from the massless limit and reach their maximum values around

asM
[0]
1 = 1{3, then decrease to the static values represented by open symbols. Fitting our

results in the small mass region (asM
[1]
1 � 1), we con�rmed that the one-loop corrections

are consistent with the mass singularity

M
[1]
1 � �CF

3

16�2
M

[0]
1 log(asM

[0]
1 )2: (5.1)

The results for asM
[1]
1 in the static limit asM

[0]
1 ! 1 depend on the action, since the

reduced static action (3.3) includes the a3s�
2
i term proportional to �ds. This situation is

in contrast to the case of �nite at calculations in [18, 21], where asM
[1]
1 goes to a universal

value. In the �nite at case, asM
[1]
1 does not depend on �ds in the atmQ !1 limit, because

the static action always gives the Wilson line.

B. Kinetic mass renormalization

The one-loop correction to the kinetic mass renormalization ZM2 is related to the speed

of light renormalization � according to (4.22). The study of the asmQ dependence of � at

the one-loop level is a main purpose of this paper. The results of Z
[1]
M2

are shown in Figure 6,

and their numerical values are given in Table II.

First, we focus on the result for the SW action, which becomes the naive quark action

in the at ! 0 limit as the Wilson term and the clover term vanish. From Figure 6 (lower

panel), we �nd that the mass dependence of Z
[1]
M2

(�lled circle) is very weak, and Z
[1]
M2

stays

constant in the in�nite mass limit. A di�erence between the value in the static limit and

that in the massless limit is Z
[1]
M2
(1) � Z

[1]
M2
(0) = �0:006. This is only 6% of the same

di�erence for the isotropic SW action �0:10 [21]. The result implies that mass dependent

discretization errors of order g2(asmQ)
n for Z

[1]
M2

are small on the anisotropic lattice. The

same conclusion holds for any action which becomes the naive quark action in the at ! 0

limit. For instance, the action with rs = 0 and ds = d=�, where d is a constant independent

of �, belongs to this class. However, we remark that such actions su�er from the spatial

doublers for large values of �, as mentioned in Section II.

Next, we consider the results for the sD34 actions, which are doubler-free even in the

at ! 0 limit. As shown in Figure 6 (lower panel), Z
[1]
M2

for the sD34 actions monotonically
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decreases as the mass increases, and diverges as O(asmQ) toward the static limit.

The O(asmQ) divergence of Z
[1]
M2

is due to the �niteness of �D(1s) in the static limit

multiplied by asm2 in (4.23). The appearance of this manifest asmQ dependence, which is

proportional to �ds, can be explained as follows. Using Z
[1]
M2
, the kinetic term renormalization

Ær for the static action (3.5) is given by

Ær = lim
mQ!1

�
1

asM2
� 1

asm2

�
= � lim

mQ!1
g2
Z

[1]
M2

asm2
+O(g4): (5.2)

Because Ær is a constant independent of the mass, Z
[1]
M2

diverges as O(asmQ) in the large

mass limit.

However, we note that this kind of O(asmQ) divergence is nothing to do with the dis-

cretization error increasing as asmQ but a renormalization of the reduced static action (3.5).

In order to isolate such an O(g2asmQ) e�ect, we consider a subtracted Z
[1]
M2

de�ned through

Z
[1]
M2;sub

= Z
[1]
M2

+ Æ[1]r asm2 (5.3)

as a measure of the remaining O(g2(asmQ)
n) (n � 2) errors. After the subtraction of the

manifest asmQ dependence, Z
[1]
M2;sub

for the sD34 actions converges to a �nite value in the

static limit as shown in Figure 7. We also �nd that the mass dependence of Z
[1]
M2;sub

for the

sD34 and sD34(v) actions is as small as that for the SW action. Note that Z [1]
M2;sub

= Z [1]
M2

for the SW action because of Ær = 0.

Another way to discuss the remaining O(g2(asmQ)
n) (n � 2) errors for the sD34 actions

is to assess their linearity in the mass parameter. Since Z
[1]
M2

for the sD34 actions seems

like a linear function of asM
[0]
1 e�ectively as shown in Figure 6 (lower panel), we attempt a

linear �t using the data for asM
[0]
1 � 0:5. The �tting lines Z

[1]
M2;lin

= Z
[1]
M2
(0) + c[1]r � asM

[0]
1

shown by dashed or dotted lines approximate Z
[1]
M2

very well from the small mass region

asM
[0]
1 � 1 to a relatively large mass regime asM

[0]
1 � 1. The di�erence Z

[1]
M2
� Z

[1]
M2;lin

is

plotted in the upper panel of Figure 6. We �nd that the di�erence is less than or about

0.005 (0.01) at asM
[0]
1 = 1 (3) for the sD34 and sD34(v) actions, and slightly larger for the

sD34(p) action. Since the (renormalized) coupling constant is g2 = 4��s � 2 in current

simulations, the di�erence from the linearity g2(Z
[1]
M2
� Z

[1]
M2;lin

) is small compared to the

tree-level value Z
[0]
M2

= 1. It indicates that O(g2(asmQ)
n) (n � 2) errors are suppressed on

the anisotropic lattice, and Z
[1]
M2

for the sD34 actions can be well approximated by a linear

ansatz; Z
[1]
M2

� Z
[1]
M2;lin

.
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If one would like to avoid the appearance of the renormalization scaling as asmQ, it is

possible to tune the spatial Wilson term as R[1]
s = �Æ[1]r such that the second term in (5.3)

vanishes, and then the one-loop coeÆcient of the speed-of-light renormalization is given by

� [1] = Z
[1]
M2;sub

=2. Since the remaining O((asmQ)
n) correction for �[1] is small and does not

diverge as a function of asmQ as shown in Figure 7, it essentially solves the problem of large

radiative correction in the anisotropic lattice actions for heavy quark. It also suggests that

if one can nonperturbatively tune the Wilson term in the static limit, e.g. by adjusting rs

until the O(asmQ) divergence of ZM2 for mesons goes away, the above cancellation of the

asmQ error can be implemented nonperturbatively.

VI. CONCLUSIONS

In this paper we discuss on the issue whether the discretization error scales as (asmQ)
n

when the heavy quark action is discretized on an anisotropic lattice for which the temporal

lattice spacing at is very small in order to keep the condition atmQ � 1 while the spatial

lattice spacing as is relatively large and asmQ can be order one. Our naive expectation is

that the discretization error does not behave as asmQ for the heavy-light mesons (or baryons)

at rest, since momentum scale owing into the spatial direction is of order of the QCD scale

�QCD rather than the heavy quark mass scale mQ. Even at the quantum level the maximum

(virtual) momentum owing into the spatial direction is �=as, and the discretization error

coming from the spatial derivative cannot pick up the large heavy quark mass.

Through the one-loop calculations of the kinetic mass renormalization for a class of

lattice fermion actions, we found that our expectation is indeed the case. For the sD34

actions there is a piece which behaves as asmQ in the one-loop coeÆcient of the kinetic

mass renormalization, but it originates from the renormalization of the spatial Wilson term,

which remains even in the static limit, and thus does not come from the discretization of the

spatial derivative. It implies that if one can nonperturbatively tune the spatial Wilson term

(the parameter rs) such that it vanishes in the static limit, the unwanted behavior asmQ can

be removed from the speed-of-light renormalization. Although there is a possibility that the

unwanted discretization error scaling as asmQ exists in some other quantities, it is unlikely

from our considerations.

The anisotropic lattice thus remains as a promising approach to treat heavy quarks on the
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lattice. As in the usual relativistic approach, the theory is renormalizable and the number

of necessary terms in the action is limited. It also opens a possibility to tune the parameters

in the action nonperturbatively for heavy quarks.
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APPENDIX A: DEFINITIONS AND FEYNMAN RULES

The lattice covariant derivatives are de�ned by

r� (x) � 1

2a�

�
U�(x) (x + �)� U��(x) (x� �)

�
; (A1)

�� (x) � 1

a2�

�
U�(x) (x + �) + U��(x) (x� �)� 2 (x)

�
; (A2)

r��� (x) � 1

2a3�

�
U�(x)U�(x + �) (x+ 2�)� U��(x)U��(x� �) (x� 2�)

�2U�(x) (x + �) + 2U��(x) (x� �)
�
; (A3)

�2
� (x) �

1

a4�

�
U�(x)U�(x + �) (x+ 2�) + U��(x)U��(x� �) (x� 2�)

�4U�(x) (x + �)� 4U��(x) (x� �) + 6 (x)
�
: (A4)

We also de�ne the lattice momenta

a��p� � sin(a�p�); (A5)

a�p̂� � 2 sin(a�p�=2): (A6)

Feynman rules for our anisotropic actions can be derived in usual way. The gluon prop-

agator with Feynman gauge is given by

Dab
��(k) =

ÆabÆ��

k̂2
: (A7)
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The quark propagator is

G0(p) =
1

i
P

� �K�(p) + L(p)
; (A8)

where

K0(p) = �p0
at!0�! p0; (A9)

Ki(p) = � �pi(1 + bsa
2
i p̂

2
i ); (A10)

and

L(p) = m0 +
1

2
at
X
�

r�p̂
2
� + �ds

X
i

a3i p̂
4
i (A11)

at!0�! m0 + �ds
X
i

a3i p̂
4
i (A12)

for our quark actions with Eq. (2.6).

The one-gluon vertex with the incoming quark momentum q, the outgoing quark momen-

tum q0 and the incoming gluon momentum k = q0 � q is given by

V a
1;�(q; q

0; k) = �igta
h
� �X�(q + q0; k)� i �Y�(q + q0; k)

i
; (A13)

where

�X�(q + q0; k) = 2a�X� cos

 
a�q� + a�q

0
�

2

!
+ 4a�Z� cos

�
a�q� + a�q

0
�

�
cos

 
a�k�
2

!
;(A14)

�Y�(q + q0; k) = 2a�Y� sin

 
a�q� + a�q

0
�

2

!
+ 4a�W� sin

�
a�q� + a�q

0
�

�
cos

 
a�k�
2

!
;(A15)

and

a�X� =
1

2
�� + ��b�; (A16)

a�Y� =
1

2
r�
a0
a�

+ 4��d�; (A17)

a�Z� = �1

2
��b�; (A18)

a�W� = ���d�: (A19)

The ta are generators of color SU(3). We ignore the one-gluon vertex arising from the clover

terms because such a vertex becomes irrelevant in the at ! 0 limit.

Finally the two-gluon vertex with the incoming gluon momenta k and k0 (k+k0 = q0� q)
is given by

V ab
2;��(q; q

0; k; k0) = 2a�g
2(tatb)�
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"
i�

(
a�X� sin

 
a�q� + a�q

0
�

2

!
+ 4a�Z� sin

�
a�q� + a�q

0
�

�
cos

 
a�k�
2

!
cos

 
a�k

0
�

2

!)

�
(
a�Y� cos

 
a�q� + a�q

0
�

2

!
+ 4a�W� cos

�
a�q� + a�q

0
�

�
cos

 
a�k�
2

!
cos

 
a�k

0
�

2

!)#
:(A20)

Here we omit terms that vanish by symmetrizing between two gluons and that arise from

the clover terms, which are unnecessary in the calculation of the tadpole graph.

APPENDIX B: k0-INTEGRATIONS

In this Appendix we summarize some formula on the k0-integrations, which are needed

for the calculation of the regular graph. We use the following results for one-dimensional

integrations:

I1 �
Z 1

�1
dx

1

a+ bx2
c

g2(ie� x)2 + f 2

= �c

8<
: 1p

ab

1

�g2(e�
q
a=b)2 + f 2

+
1

a� b(e + f=g)2
1

fg

9=
; ; (B1)

I2 �
Z 1

�1
dx

1

a+ bx2
c(ie� x)

g2(ie� x)2 + f 2

= i�c

8<
: 1p

ab

e�
q
a=b

�g2(e�
q
a=b)2 + f 2

� 1

a� b(e + f=g)2
1

g2

9=
; ; (B2)

I3 �
Z 1

�1
dx

1

a+ bx2
c

(g2(ie� x)2 + f 2)2
= � 1

2f

@I1
@f

; (B3)

I4 �
Z 1

�1
dx

1

a+ bx2
c(ie� x)2

(g2(ie� x)2 + f 2)2
= � 1

2g

@I1
@g

; (B4)

I5 �
Z 1

�1
dx

1

a+ bx2
c(ie� x)

(g2(ie� x)2 + f 2)2
= � 1

2f

@I2
@f

; (B5)

I6 �
Z 1

�1
dx

1

a+ bx2
c

(g2(ie� x)2 + f 2)3
= � 1

4f

@I3
@f

; (B6)

I7 �
Z 1

�1
dx

1

a+ bx2
c(ie� x)

(g2(ie� x)2 + f 2)3
= � 1

4f

@I5
@f

; (B7)

where e < f=g is assumed. These integrations are calculated by hand using the residue

theorem, and checked by Mathematica.

In the calculation of the regular graph, we assign

x! k0 ; a! jk̂j2 ; b! a2s ; g ! 1 ; e!M1 ; f ! E(k) ; (B8)
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where

E(k) �
s
�2
X
i

�k2i (1 + bsa2i k̂
2
i )

2 + (m0 + �ds
X
i

a3i k̂
4
i )

2 : (B9)

The overall factors c depend on the spatial momentum k. Using integrations I1{I7 with

above assignments, relevant contributions from the regular graph are given by

�Breg
0 (iM1; 0) =

Z
k

1

2�
I2�B0 ; (B10)

�Creg(iM1; 0) =
Z
k

1

2�
I1�C ; (B11)

�Areg
1 (iM1; 0) =

Z
k

1

2�
(I1�A1 + I3�A1) ; (B12)

�Dreg
1s (0) =

Z
k

1

2�

�
1

i
(I2�Ds + I5�Ds + I7�Ds)� (I1�Ds + I3�Ds + I6�Ds)

�
; (B13)

i �Dreg
1t (0) =

Z
k

1

2�
(I1�Dt + I4�Dt � iI5�Dt) : (B14)
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asM
[1]
1

asM
[0]
1 SW sD34 sD34(v) sD34(p)

0:0 0:000000(00) 0:000000(00) 0:000000(00) 0:000000(00)

0:1 0:033586(11) 0:018299(19) 0:018360(21) 0:015615(23)

0:2 0:059382(20) 0:029235(21) 0:029306(21) 0:024206(23)

0:3 0:081252(22) 0:037292(24) 0:037354(23) 0:030177(41)

0:4 0:100023(23) 0:043466(28) 0:043405(21) 0:034594(25)

0:5 0:116008(27) 0:048228(29) 0:048196(25) 0:037909(25)

0:6 0:129786(19) 0:051966(24) 0:051762(25) 0:040428(32)

0:7 0:141467(36) 0:054948(34) 0:054572(31) 0:042396(31)

0:8 0:151341(22) 0:057183(24) 0:056763(22) 0:043836(33)

0:9 0:159679(29) 0:059029(36) 0:058465(29) 0:044916(49)

1:0 0:166758(21) 0:060338(33) 0:059687(24) 0:045724(34)

2:0 0:196227(24) 0:062578(35) 0:060997(28) 0:045709(32)

3:0 0:199166(39) 0:058705(39) 0:056713(28) 0:041241(34)

4:0 0:197161(26) 0:054263(23) 0:052280(29) 0:036472(30)

5:0 0:194441(44) 0:050519(28) 0:048617(55) 0:032255(53)

10:0 0:184712(29) 0:038993(46) 0:037121(28) 0:018373(37)

1 0:168490(26) 0:019045(21) 0:018249(29) �0:009803(27)

asm
[1]
0c

- 0:000000(00) �0:060828(02) �0:061672(02) 0:001431(03)

TABLE I: Numerical values of asM
[1]
1 for various values of asM

[0]
1 , and asm

[1]
0c for the SW action

and the sD34 actions.
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Z
[1]
M2

asM
[0]
1 SW sD34 sD34(v) sD34(p)

0:0 0:01810(35) 0:02061(30) 0:02369(49) 0:00549(59)

0:1 0:01812(19) 0:016066(63) 0:020152(61) �0:00313(11)

0:2 0:018236(53) 0:012019(46) 0:016416(46) �0:012140(85)

0:3 0:017991(51) 0:007856(48) 0:012592(45) �0:021208(59)

0:4 0:017941(49) 0:003750(39) 0:009003(38) �0:030040(78)

0:5 0:017801(43) �0:000349(34) 0:005406(47) �0:039223(56)

0:6 0:016708(38) �0:004308(39) 0:001676(33) �0:047996(50)

0:7 0:017507(32) �0:008387(32) �0:001963(32) �0:056888(53)

0:8 0:017326(64) �0:012299(84) �0:005543(28) �0:065500(50)

0:9 0:017142(47) �0:016238(28) �0:009117(28) �0:074070(46)

1:0 0:016862(36) �0:020149(28) �0:012661(31) �0:082456(55)

2:0 0:015176(35) �0:056742(34) �0:046665(28) �0:160259(59)

3:0 0:014246(21) �0:090607(29) �0:078766(30) �0:229675(78)

4:0 0:013677(17) �0:122890(42) �0:109982(40) �0:293550(90)

5:0 0:013371(18) �0:154177(45) �0:140336(48) �0:35409(12)

10:0 0:012716(15) �0:304675(91) �0:288888(86) �0:63276(22)

1 0:012316(07) �1 �1 �1

TABLE II: Numerical values of Z
[1]
M2

for the SW action and the sD34 actions.

28
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as|p(1,1,0)|

0

1

2

3

4
a sE

continuum
ξ=1
ξ=2
ξ=5
ξ=10
ξ=1000

SW, asE(0)=0

0 1 2 3 4
as|p(1,1,0)|

0

1

2

3

4

a sE

continuum
ξ=1
ξ=2
ξ=5
ξ=10
ξ=1000

SW, asE(0)=1

FIG. 1: Energy-momentum relation at di�erent values of � for the SW action. The left panel shows

the case of asE(0) = 0, while the right shows asE(0) = 1. The spatial momentum p is along the

(1; 1; 0) direction. For comparison we also plot the energy-momentum relation in the continuum.
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a sE

continuum
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ξ=2
ξ=5
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sD34, asE(0)=0
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0
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3

4

a sE

continuum
ξ=1
ξ=2
ξ=5
ξ=10
ξ=1000

sD34, asE(0)=1

FIG. 2: Energy-momentum relation for the sD34 action.
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as|p(1,1,0)|
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a sE

continuum
ξ=1
ξ=2
ξ=5
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ξ=1000

sD34(p), asE(0)=0
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as|p(1,1,0)|

0

1
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3

4

a sE

continuum
ξ=1
ξ=2
ξ=5
ξ=10
ξ=1000

sD34(p), asE(0)=1

FIG. 3: Energy-momentum relation for the sD34(p) action.

(b)

k
k

p−kp            p            

(a)

FIG. 4: Feynman graphs relevant for the one-loop quark self energy. The left (a) is the regular

graph, and the right (b) is the tadpole graph.
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0 0.2 0.4 0.6 0.8 1
asM1

[0]
/(1+asM1

[0]
)

0

0.1

0.2

a sM
1[1

]

SW
sD34
sD34(v)
sD34(p)

FIG. 5: asM
[1]
1 versus asM

[0]
1 =(1 + asM

[0]
1 ) for the SW action and the sD34 actions. The values in

the static limit are denoted by open symbols.
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asM1

[0]
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sD34(p)
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ZM2
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ZM2

[1]
−ZM2,lin

[1]

FIG. 6: The lower �gure shows Z
[1]
M2

versus asM
[0]
1 for the SW action and the sD34 actions.

The value in the static limit for the SW action is denoted by open circle. Lines are the linear

approximations to the results for the sD34 actions (Z
[1]
M2;lin

) as explained in the text. The upper

�gure shows the di�erence Z
[1]
M2
� Z

[1]
M2;lin

versus asM
[0]
1 for the sD34 actions.
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FIG. 7: Z
[1]
M2;sub

for the sD34 actions together with Z
[1]
M2;sub

= Z
[1]
M2

for the SW action.
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